
Watchpoint: Freehand Pointing with a Smartwatch in a
Ubiquitous Display Environment

Keiko Katsuragawa*, Krzysztof Pietroszek†, James R. Wallace‡* and Edward Lank*

*Cheriton School of Computer
Science, University of Waterloo

Waterloo, Ontario, Canada

{kkatsura, lank}@uwaterloo.ca

†California State University
Monterey Bay

Seaside, California, USA
kpietroszek@csmb.edu

‡School of Public Health and Health
Systems, University of Waterloo

Waterloo, Ontario, Canada
james.wallace@uwaterloo.ca

ABSTRACT

We describe the design and evaluation of a freehand, smartwatch-

based, mid-air pointing and clicking interaction technique, called

Watchpoint. Watchpoint enables a user to point at a target on a

nearby large display by moving their arm. It also enables target

selection through a wrist rotation gesture. We validate the use of

Watchpoint by comparing its performance with two existing

techniques: Myopoint, which uses a specialized forearm mounted

motion sensor, and a camera-based (Vicon) motion capture

system. We show that Watchpoint is statistically comparable in

speed and error rate to both systems and, in fact, outperforms in

terms of error rate for small (high Fitts’s ID) targets. Our work

demonstrates that a commodity smartwatch can serve as an

effective pointing device in ubiquitous display environments.

CCS Concepts

• Human-centered computing➝Interaction devices.

Keywords

wearable, pointing, large displays, smartwatch

1. INTRODUCTION
The ability to point and gesture at nearby objects is a natural and

intuitive method of interaction, widely used by humans as they

communicate with one another. Alongside its use in interpersonal

communication, freehand interaction, i.e. pointing and gesturing,

has been frequently explored as a modality for interacting with

ubiquitous computing objects [2] [9] [19], a result of its ability to

communicate target and actions of interest. Given the widespread

availability of computation – both in displays and in augmented

smart devices – an interaction modality that communicates both

target and intent remains an important goal of interaction research.

While pointing and gesturing seems a desirable interaction

modality for ubiquitous computing environments, the technical

ability to track hand movements has proven challenging, and no

‘gold standard’ solution has yet to be established. For example,

vision-based systems have shown potential by tracking users in

front of large displays, but can suffer from poor lighting and

occlusion [6][17]. Vision-based systems also require

augmentation of the environment with specialized sensing to

support interaction, adding cost to their deployment. Specialized

devices, such as Nintendo’s Wiimote, or Thalymic Lab’s Myo,

can facilitate interactions with nearby devices but require users to

purchase and setup those devices prior to interaction.

Alongside specialized devices and augmented environments,

generic personal devices such as smartphones and smartwatches

represent platforms of convenience to access computing in

everyday contexts [13]. Specifically within the space of pointing

and gestural interaction, smartwatches represent a particularly

accessible companion for sensing user input. They are ‘always on’

and ready, are worn on the wrist, are able to communicate

wirelessly with nearby devices, and contain an evolving set of

sensors (cameras, inertial measurement units) that sense device

movement. Finally, because the cost of these devices is relatively

low and because a device is uniquely assigned to a single user,

smartwatches overcome both the cost of instrumenting an

environment and the challenge of identifying a specific user of

interest from the surrounding context.

While it may be desirable to solve all challenges associated with

ubiquitous input, this paper focuses specifically on the paradigm

of pointing and selecting in ubiquitous display environments. We

restrict ourselves to this paradigm both because it is a natural

extension of the familiar components of WIMP-interaction into

the ubiquitous context and because pointing and selecting are

foundational activities in the articulation of intent in

communicative interactions. In other words, pointing and clicking

are useful interactions in any reactive environment because they

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

AVI’16, June 07–10, 2016, Bari, Italy.

Copyright is held by the owner/author(s). Publication rights licensed to

ACM. ACM 978-1-4503-4131-8/16/06…$15.00.

DOI: http://dx.doi.org/10.1145/2909132.2909263

Figure 1. Watchpoint enables freehand interaction with

nearby ubiquitous displays via a user’s smartwatch.

128

leverage both a user’s familiarity with computer interaction and

are a natural and demonstrative way of selecting the desired target

of interaction and activating its available services.

In this paper, we present the design and validation of Watchpoint,

a system that supports pointing and clicking on a nearby large

display via a smartwatch (Figure 1). Through early pilot studies

we identify challenges associated with target acquisition and

design cursor stability functions in both moving and clicking to

support rapid interaction. We also show through a controlled

Fitts’s Law study that our prototype provides performance

comparable to other freehand pointing techniques for pointing

time. Finally, we present optimizations for target selection that

allows Watchpoint to outperform both Vision-based Vicon-system

[18] and specialized device-based Myo freehand pointing input

[8] in terms of error rate for small targets. Our work demonstrates

that a commodity smartwatch can serve as an interaction device

for pointing in ubiquitous display environments.

This paper is organized as follows. First, we explore related work

in pointing and target selection in ubiquitous display

environments. Next, we describe the interaction supported by

Watchpoint, including optimizations that we identified through

pilot testing. Finally, we present our summative evaluation of

Watchpoint and discuss the implications of our work.

2. RELATED WORK
Given the ubiquity of displays in our everyday lives, the idea of

supporting interaction with these displays is of interest [2] [9]

[19]. While some displays that we encounter naturally support

interaction with attached input device such as keyboards and mice

or touchscreens, many displays only support more distant

interactions or do not support any interactions because of the cost

and the hardware restriction. The compelling rationale around

supporting freehand gestural input to ubiquitous displays is that

interaction can be supported in a way that places few restrictions

on the placement of the device or the availability of user-centric

specialized hardware. In other words, freehand gestural input

enables, from an end-user perspective, a true ‘walk-up-and-use’

experience with ubiquitous devices. However, the desirability of

freehand interaction is offset by the requirement of user

movement tracking. The lack of reliable tracking results

frequently in both high-cost and a high error rate.

In this section we explore, in turn, the use of handheld devices and

special purpose devices to interact with ubiquitous displays, the

efficacy of freehand pointing techniques to interact with

ubiquitous displays, and smartwatch-based multi-display

interactions.

2.1 Distant interaction with personal devices
Since the mid-1990s, the use of handheld devices to interact with

external, ubiquitous displays has been an ever-expanding focus of

research in human-computer interaction [2][13][15][16][19]. The

Pebbles project leveraged early handheld computers to explore

and provide input to external computer displays [13]. Follow-on

work included systems such as peephole [20] and, more recently,

systems such as Smartcasting [15] and Tiltcasting [16]. The

benefit of using general purpose handheld computers to interact

with ubiquitous displays is that the nature of these devices

increases the likelihood that they are available: Users are more

likely to have with them a general purpose device than some form

of specialized hardware which is only useful in a specific

computational context. Drawbacks of using a general purpose

computational platform includes the fact using a device designed

for one purpose for another to which it may be poorly suited.

Another drawback is that, even if a handheld computer is carried

by the user, the act of pulling it out of one’s pocket and turning it

on does introduce a lack of fluidity into interaction.

To enhance the speed and accuracy of pointing, one can always

design hardware that is optimized for a specific task. One example

of a special purpose pointing device is the Wii-remote, a game

controller that includes both a handheld input device containing

an inertial measurement unit (IMU) and camera and emitter

systems that support more accurate tracking [19]. More recently,

developers of devices such as the Myo have exploited novel

sensing [9], potentially improving gesture input and recognition.

2.2 Vision-based freehand interaction
While one option to support pointing is to use a personal device or

a specialized device, the ideal point-and-click interaction in public

environments is simply to point at the display. The most obvious

way to support freehand input to ubiquitous displays is to track

user input as users interact in surroundings that contain ubiquitous

displays. Two common approaches to tracking as a mechanism for

computer input are, first, to leverage high-end accurate movement

tracking systems. These highly precise motion capture systems

represent a gold standard to support gestural input on large

displays.

While precise, high end trackers are costly for end users, and this

high cost has given rise to a set of commodity tracking systems

including devices such as the Microsoft Kinect and the Leap

Motion hand gesture sensor. These lower-end systems

compromise on either precision or range, but do support many

useful gestural interactions; if neither the cost nor the potential for

theft of vandalism is a concern, these systems can be deployed

cheaply and rapidly in many environments.

Regardless of whether one uses a highly precise and costly motion

capture system or one uses less costly commodity devices, there

exist other drawbacks to computer-vision-based gestural tracking

systems, particularly when deployed in real world contexts. For

example, motion capture systems like the Vicon typically require

users to position tracking points on their limbs to aid more

accurate identification; the use of these tracking points is a barrier

to public deployments because users will not, typically, be

equipped with augmentations to aid in tracking in their everyday

activities. Even if one neglects the complexity of augmenting

users, occlusion and distractors (e.g., non-users within the

tracking region) frequently cause problems for these systems.

Furthermore, even with problems of augmentation and occlusion

solved, range issues continue to persist, with tracking systems

frequently being restricted to a relatively small region. Finally,

even if all other problems are solved and one assumes fully

reliable tracking, it is sometimes desirable to preserve the identity

of a user from one session to the next, and this is challenging for

motion capture systems as they are designed to capture movement

and not to recognize faces or other salient features of an

individual.

2.3 Smartwatch
As an alternative device for distant interaction, we were motivated

to explore the smartwatch as a platform of convenience based on

four advantages over handheld computers such as smartphones

[2], specialized devices such as the Myo [9], and camera-based

techniques such as Vicon-based systems [19]. First, a smartwatch

is always on and always ready to be used, and, unlike a

smartphone does not need to be removed from a user’s pocket and

unlocked. Second, a smartwatch is cost effective (versus, e.g.

Vicon), and, unlike a Myo armband or Tobii eyetracking glasses,

129

a smartwatch is intended to be used on a daily basis to support a

number of tasks, and not as a specialized input device. Third, use

of a smartwatch obviates the need for other sensing hardware, as

opposed to computer vision based systems where each display

must be configured with cameras to detect gestures, and the

effectiveness of the technique relies upon proper lighting and

limited occlusion. Finally, because a smartwatch is designed as a

personal device and has a unique ID, it provides a means of

identifying a user during a sequence of ubiquitous interactions – a

noted limitation of camera-based techniques [8].

Given these many benefits, the question remains whether a current

generation, off-the-shelf smartwatch can match the pointing

performance afforded by other technologies. With this question in

mind, we created a prototype smartwatch-based ubiquitous

freehand pointing technique, called Watchpoint.

3. WATCHPOINT DESIGN
Development of the Watchpoint prototype involved capturing

motion data from the smartwatch hardware, interpretation of

captured motion data, and relaying pointer events to an associated

ubiquitous display. This section presents the design of the overall

system, including hardware, interaction, and calibration or cursor

to display location.

3.1 Hardware & Sensors
Watchpoint hardware consists of an Android smartwatch, a

smartphone, and a personal computer. The smartwatch detects a

user’s hand movements using its built-in gravity and rotation

vector sensors. In our current prototype, the watch then relays raw

sensor input data to a connected smartphone via Bluetooth. The

smartphone then forwards movement data to a personal computer

via USB. The computer interprets sensor input into on-screen

mouse movements and depicts interaction on an attached display,

typically a data projector projecting on a rear-projection display to

mimic a ubiquitous public display. Note that, within the hardware

setup, the Android smartphone only exists due to programming

constraints in the Android Wear ecosystem; we will be able to

eliminate the smartphone from the data input stream once this

programming constraint is relaxed.

Watchpoint uses an Android smartwatch’s gravity and orientation

sensor. One requirement of the smartwatch is that it must

incorporate a ‘nine-axis’ inertial measurement unit (IMU), i.e. it

must incorporate an IMU that includes an accelerometer

(movement and gravity), a gyroscope (movement and orientation)

and a magnetometer (movement and orientation) to provide

sufficient input accuracy. The specific hardware device we use in

our implementation is an LG G Watch R connected via Bluetooth

to a Nexus brand smartphone device, but any smartwatch

containing a 9-axis IMU will support Watchpoint interaction.

We currently sample both orientation and gravity at a rate of 50Hz

with a latency of less than 100ms. This frequency is high enough

to track hand movement smoothly and also gives a sufficient data

stream to support smoothing, an issue discussed later in this

section.

3.2 Controlling the Cursor

3.2.1 Activating and Deactivating Cursor Movement
To support cursor input, Watchpoint leverages the ray-casting

metaphor [12], where a user controls a cursor on a nearby display

by pointing at it, and the position of the cursor on the display is

determined by the intersection of a ‘cast’ ray intersecting with the

screen. Watchpoint employs fixed-point ray-casting, where the

origin of the ray relative to the display is fixed (Figure 2)

regardless of the user’s position. This process simplifies

interaction because the user does not need to be tracked; instead,

cursor movement on-screen maps to device movement, but the

actual position of the on-screen cursor is a result of relative

movement of the fixed origin ray. Fixed-origin ray-casting has

been shown to be an effect method of supporting ray-casting with

a personal device [15].

Watchpoint’s interaction model (Figure 3 and 4) consists of four

states: Inactive, Tracking, Clicked, and Mouse down. The cursor

is initially placed in an inactive state with the user’s arm resting at

their side (Figure 3a). When the user raises his or her arm, the

system switches into the Tracking state (Figure 3b), and a cursor

appears on the external display allowing the user to move a cursor

around the screen. From the Tracking state, the user can invoke a

click event by rotating the wrist outwards (watch face down), and

a drag event by rotating their wrist inwards (watch face up),

(Figure 3c). In each of the Tracking, the Clicked, and the Mouse

down states a user can manipulate the cursor position by moving

their arms up/down and left/right.

It is common to represent WIMP-based interaction using a 3-state

model attributable [4]. In this work, we separate the drag state into

two different states, click and drag. The rationale for the

separation between click and drag states is as follows. We had

originally decided to include only three states (Inactive, Tracking

and Mouse down), but pilot testing revealed that it was difficult

for users to return to the Tracking state (Mouse up) from a Mouse

down state without dragging. Therefore, we decided to separate

the Click and Drag functionality into two separate states.

Figure 2. Fixed-point ray-casting.

Figure 3. From the Inactive mode (a), the user can activate

Watchpoint by raising their arm (b,c). When active, the user

can control the cursor and pointer (b) and drag and click(c) on

the nearby display.

130

A challenge identified in early pilot testing was avoiding

unintended clicks. As shown in Figure 4, the Tracking state is

represented by the user holding her arm flexed with the watch

face vertical. To avoid unintentional multiple clicks by the wrist,

Watchpoint uses a 300ms threshold for continuous clicks [9].

Another issue is unintentional transitions between the Mouse

down and Tracking states. To avoid these transitions, we use an

asymmetric wrist angle for activation and deactivation. To move

from the Tracking state to the Mouse down state, one must rotate

the wrist 60o, and then back to less than 45o to return to the

Tracking state (Figure 4). Similarly, for Clicked, Watchpoint uses

an activation angel of -30o and a deactivation angel of -10o. We

identified problems of accidental activation/deactivation during

pilot testing, empirically set thresholds for activation and

deactivation. These thresholds seem to work well: they are well

within the normal range of movement of a user’s wrist rotation

range, but are sufficiently separated that the distinction between

activation and deactivation is non-negligible.

3.2.2 Cursor Movement
As noted earlier, Watchpoint uses a smartwatch’s IMU to detect

movement. X-axis and Y-axis movement are detected in two

different ways. For x-axis movement, the rotation sensor is used

to detect the angle of a user’s forearm in the horizontal plane. The

rotation sensor on a 9-axis IMU combines readings from the

magnetometer and gyroscope to sense position and movement. As

a result, one challenge is to identify an appropriate initial reading

for the location of the display.

To map horizontal movement onto x-axis movement on an

external display, Watchpoint maps 60o (π/3 radians) of horizontal

forearm movement to the range spanning the width of the screen,

a movement range calibrated during pilot testing to be sufficiently

wide so as to allow precise targeting and sufficiently narrow that

users did not need to hyperextend to access the entire screen.

Specifically, given a horizontal screen resolution of W and a

rotation reading from the smartwatch, the x-coordinate of the

cursor at the given time , denoted by Xi can be obtained by the

following formula:

𝑋𝑖 =
𝑊

2
+

3θ𝑖

𝜋

Watchpoint uses Android’s gravity sensor to determine the y-

coordinate of the cursor and detect wrist rotation. The gravity

sensor measures the magnitude of gravity in three dimensions

through a fusion of accelerometer and gyroscope data [1]. Thus,

data from the gravity sensor is similar to accelerometer readings,

but without linear acceleration. When the users rest their arm at

their side, the y- and z- components are 0 and the x-component is

equal to the force of gravity (9.8m/s^2). When a user raises their

arm horizontally to point at a display, keeping the watch face

approximately vertical relative to the floor, the y-component will

be equal to the gravity and x and z will be zero, as shown in

Figure 5.

Note in Figure 5 that the x-component of the smartwatch’s

coordinate system is aligned with the user’s arm. Leveraging the

fact that the x-coordinate system of the smartwatch is aligned with

the arm, the angle of the user’s arm can be calculated using the x-

component of gravity as follows:

𝜑𝑖 = cos−1
𝐺𝑟𝑎𝑣𝑖𝑡𝑦𝑥

9.8

Using this angle, given a vertical display resolution of h, the y-

coordinate of the cursor Yi at a given time i can be calculated

as follows:

𝑌𝑖 =
ℎ

2
+ 𝜑𝑖

3ℎ

𝜋

Finally, we can again leverage the force of gravity to sense

clicking and dragging. When the user tilts the watch by rotating

the wrist to the outside, the z component of gravity will increase.

When the watch tilt angle obtained from the z-component

exceeds 30 degrees outwards, Watchpoint triggers the click state;

likewise, exceeding 60 degrees inwards fires a change of state to

the drag state.

3.2.3 Calibration
One important consideration in Watchpoint is cursor calibration.

Specifically, because we are using absolute orientation readings

from a 9-axis IMU, we need some way to indicate where the

middle of the display is, i.e., to align the center of the display with

the user. We use the transition from the Inactive to the Tracking

states as a calibration step. When the user lifts his or her arm

(Figures 3 and 4) to activate cursor movement, the cursor location

is initialized as the mid-point of the width of the display, i.e. x =

displaywidth/2. Users would interact with the display, allow their

arms to drop to rest, and then begin to interact with the display

again. Since our calibration step is very subtle, it can naturally

merge into this activating process. Our Inactive to Tracking state

q i

i

ri

2

 1

3

1

 1

Figure4. This figure summarizes empirically determined

thresholds used to support Watchpoints transitions from

Inactive to Tracking to Clicked and Mouse down states.

Figure 5. XY-components of gravity.

131

transition allows us to repeatedly calibrate the overall angle,

supporting a reset of interaction and preventing cursor drift

without requiring users to spend extra time for calibration. These

savings are one of the benefits of absolute position mapping.

3.3 Correction and filtering
While the above design provides sufficient functionality to control

a mouse cursor on a nearby display and interact with on-screen

data, we identified several areas for improvement during pilot

testing. In particular, the mouse cursor often ‘jumped’ when users

rotated their wrist to select a target, and we noticed difficulty in

pointing at small targets due to a high level of jitter. This section

describes how we addressed these issues in our final design.

3.3.1 Clicking Correction
A drawback of using wrist rotation to trigger selection is that

when an individual rotates their arm, the watch may initially

detect horizontal movements. While the smartwatch’s lateral

movement is minimal, we found that in practice the on-screen

mouse cursor would move enough to cause ‘missed’ selections, a

phenomenon known as the Heisenberg Effect [3]. We found this

issue was particularly frequent when selecting smaller targets.

To address the issue, Watchpoint calculates the direction of wrist

rotation at each sensor signal input event and applies a simple

threshold. When the speed of the rotation is greater than 5 degrees

per second, the direction of the watch rotation is defined as right

or left depending on its direction of movement. If the wrist

rotation is less than 5 degrees/second, it is defined as neutral.

When Watchpoint detects a wrist rotation that would lead to a

state change (i.e., from neutral to left/right or vice versa), the

mouse cursor’s on-screen position is stored in memory for later

use during a click event.

When a click event is triggered by the user rotating their wrist to

an angle exceeding 30o outward (Click) or 60o inward (Mouse

down), Watchpoint checks if a cursor position was saved less than

1 second ago. If this is the case, the cursor’s position for the click

action is moved back to the saved position. This simple book-

keeping operation is highly effective at stabilizing cursor position

during clicking – so effective, in fact, that our error rate exceeds

Vicon-based tracking of clicking gestures as implemented in past

systems [19].

3.3.2 Cursor Acceleration
Freehand pointing at small targets with any technique is

challenging because of natural hand tremors and sensor noise. In-

line with other research [9][19] our pilot testing revealed that

these factors made it difficult for users to select small targets, as it

was difficult to maintain the mouse cursor’s position long enough

to trigger a selection. For example, in our initial design, one

degree of horizontal movement corresponds to about 28.5mm

(30.3px) of cursor movement. Thus, to select a target with a

diameter of less than 20mm, a user needs to keep their arm within

a range of a single angular degree.

To address this issue, we introduced a cursor acceleration function

to slow down the cursor movement in these cases. Watchpoint

scales the cursor’s speed depending on the speed of the

smartwatch’s physical movement. We experimented with a

number of cursor acceleration functions but, ultimately, we

implemented the following step acceleration function:

 When the speed of the watch movement is faster than 10

degrees/second, the cursor moves at the normal speed (30.3

px/degree). This corresponds to direct input.

 When the watch speed is slower than 5 degrees/second, the

speed of cursor movement is 15.15px/degree, i.e. half of the

normal speed.

 When the watch speed is between 5 degrees/second and 10

degrees/second, a smooth power function is used to map

IMU data to cursor speed.

Other cursor acceleration functions exist, including a detailed

exploration of cursor function by Nancel et al. [14]. But an

important difference between our implementation and previous

work is that we use absolute positional input to assign cursor

movement to orientation (Equations 1, 2, and 3). In our pilot

testing we found that this simple acceleration function allowed us

to preserve absolute positioning for high speed, while maintaining

the ray-casting metaphor, and limited the extent of relative

positioning during fine-tuning.

One drawback of combining absolute and relative positioning in

the interface is that the center position of the cursor may be

shifted from the original center angle after a series of slow

movements. To correct for this offset, Watchpoint reverts to

absolute positioning immediately after any click event and upon

speed up to a speed greater than 10 degrees/second.

The drawback of cursor repositioning on click or speed up is that

this does result in a cursor jump. On speed-up, participants in pilot

studies were unaware of the cursor jump; however, on click,

participants could see the cursor jump, but the reassurance of the

event firing correctly reassured participants in our pilot studies

that, at the very least, input was correctly interpreted.

3.3.3 Jitter correction
The final issue we address is jitter. Although Android’s gravity

and rotation vector data are smoothed, they still include some

noise, which affects pointing performance, particularly for small

targets. We originally used a 50 ms moving average as a filter, but

found this was insufficient to suppress jitter and caused latency in

input. To address this issue, we implemented the 1 € filter [5] with

a minimum cutoff set to 3.0Hz, delta cutoff set to 1.0 Hz and beta

set to 0.01.

4. EXPERIMENTAL VALIDATION
We experimentally validated Watchpoint’s performance using a

Fitts’s Law task [7][11]. Because our initial motivation was to

determine if a smartwatch can support pointing performance

comparable to camera- and device-based techniques, our goal was

to identify representative techniques and perform a comparative

study with Watchpoint.

Haque et al. [9] provides a useful baseline by which we can

evaluate freehand pointing techniques: in their evaluation of

Myopoint, they find that their technique provides similar pointing

performance to a Vicon-based technique. We use the same criteria

in our evaluation, and find that Watchpoint provides comparable

pointing speed to both Vicon and Myopoint. Replicating the

experimental setup of Myopoint [9] and a Vicon-based freehand

pointing evaluation by Vogel and Balakrishnan [19], a between-

subjects analysis showed Watchpoint is statistically comparable in

performance and outperforms in terms of error rate for small (high

ID) targets as compared to both Vicon systems and to Myopoint.

4.1 Participants
We collected interaction data from 10 participants (2 female, 1

left-handed). The participants used their dominant hand for the

experiment. Each participant received $5 remuneration, and each

session lasted 20 to 30 minutes.

132

4.2 Apparatus
Participants completed the experimental task while wearing an LG

G Watch R smartwatch, with sensor data forwarded to an Android

Nexus 5 smartphone. The Nexus 5 was connected to a MacBook

Air laptop computer. Participants stood 2m from a projector

screen. The projection area was 1.71m by 1.05m (1920 by 1080

px). Although Vogel and Balaksishnan [19] and Haque et al. [9]

used a wider dsplay with a 32:9 aspect ratio, we used a standard

16:9 projector screen. We chose to use a display with a 1.06 px-

per-mm density to fall between those used in the evaluation of

Myopoint [9] (0.83 px-per-mm) and the Vicon-based technique

[19] (1.23 px-per-mm). The study took place in a closed

experimental space on campus at our university laboratory.

4.3 Experimental Task and Design
We used the ISO 9241 Part 9 standard multi-directional Fitts’s

Law pointing task [7][11], with independent variables for Target

WIDTH and DISTANCE. To enable comparisons with previous

evaluations, we included target WIDTHs of 16, 54, and 144 mm.

We also included 34mm targets to provide a greater opportunity to

evaluate pointing performance for small targets. We included

three target DISTANCES of 960mm, 640mm and 320mm, which

when combined with the 4 target WIDTHs created 12 ID values

ranging from 1.68 to 5.93. Our dependent variables were

MOVEMENT TIME and ERROR RATE.

Our study differed from previous work in the method used to

control Fitts’s IDs. In the previous two studies, the researchers

increased ID by increasing DISTANCE; however, the wider display

aspect ratios used in their study prohibited the use of a fully multi-

directional test, and their targets were, instead, separated only

horizontally. We feel that this is a significant drawback to past

research as it prevents comparison of input using the standard ISO

multi-directional Fitts’s Law pointing task. We addressed this

limitation in our study by controlling both target WIDTH and

DISTANCE, evaluating values of WIDTH and DISTANCE which

permit a fully multi-directional test.

In summary, given our experimental task, participants completed

13 trials in each of 4 WIDTH × 3 DISTANCE conditions in a series

of 12 blocks with one WIDTH-DISTANCE combination per block.

The order of the 12 blocks was randomized. Overall, we collected

4 WIDTHS × 3 DISTANCES × 13 Repetitions × 10 Participants

for a total of 1560 trials.

4.4 Procedure
Participants were first welcomed, completed a brief demographic

questionnaire and informed consent form, and the experimental

task was explained and demonstrated. Participants next completed

two practice blocks and were given an opportunity to ask

questions about the task before starting the experimental trials.

Once ready, participants were instructed to work as quickly and as

accurately as possible, to continue without trying to correct errors,

and to rest as desired between blocks.

4.5 Data Collection and Analysis
All cursor movements were logged to data files. Trials judged to

be errors, where the ‘click’ event fell outside of a target, were

counted as errors and included in error rate analysis but were

excluded from our analyses of movement time. Comparisons

between Watch and Myo techniques for MOVEMENT TIME and

ERROR RATE were performed using Repeated Measures Analysis

of Variance (RM-ANOVA) tests, with an alpha of .05.

4.6 Result
As noted, error trials were excluded from Movement Time

analysis. Overall error rate was 14.1% of trials. It was 17.9% in

the Myo study and 18.4% in the Vicon study.

4.6.1 Movement Time
There was no significant effect of technique on Movement Time

between Watchpoint, Myopoint, and Vicon. Qualitatively, the

target selection time of Watchpoint was between Myopoint and

Vicon. Figure 6 depicts movement time plots for Watchpoint

(blue), Myopoint (red), and Vicon (green). Line fitting equations

and R2 values are as follows:

 Watchpoint: R² = .96 MT = 106.13 + 587.37 × ID

 Myopoint: R² = .97, MT = 171.59 + 609.36 × ID

 Vicon: R² = .87, MT = 28.93 + 528.32 × ID

4.6.2 Error Rate
Watchpoint had a significantly lower error rate (F(1,22)=17.80, p

<0.001) than Myopoint (Figure 7). As expected, there was

significant effect of target WIDTH on error rate (F(2,22)=349.43,

p<0.001). Post hoc analyses revealed an interaction effect between

TECHNIQUE and target WIDTH (F(2,22)=4.8, p=0.012), and a

simple main effects analysis showed that Watchpoint had a

significantly lower error rate than Myopoint for 48 mm targets

(p<0.038 at 48mm) and than both Myopoint and Vicon for 16mm

targets (p<0.001 at 16mm). Vicon outperformed for large

(144mm) targets. No differences were found between Watchpoint

and Myopoint for large targets (p=0.585). Analysis of main

effects revealed a significant difference between WIDTH with both

Watchpoint and Myopoint (Watch p=0.0017, Myo p<0.001).

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10

M
o

ve
m

e
n

t
Ti

m
e

 (
M

s)

Fitt's ID (bits)

Watchpoint

Myopoint

Vicon

Figure 6. Movement time by ID.

.

0

0,1

0,2

0,3

0,4

0,5

16 48 144

Er
ro

r
R

at
e

Width (mm)

Watchpoint
Myopoint
Myopoint300ms
Vicon

Figure 7. Error rate by target WIDTH. Error bars are SEM.

133

4.7 Discussion
Our results suggest that Watchpoint provides robust support for

freehand pointing, matching the selection time performance of

comparable techniques. Our RM-ANOVA comparison of the

three techniques revealed no significant difference for MOVEMENT

TIME. Analysis of effect size indicates that the observed difference

between techniques is quite small. Given that Vicon-based

pointing is often regarded as a ‘gold standard’ for freehand

pointing [19], we consider this level of performance indicative

that Watchpoint is suitable for supporting a variety of applications

in ubiquitous settings.

Further, our results suggest that Watchpoint supports freehand

pointing with a lower error rate than Myopoint (p = .002). These

differences were particularly evident for small (16mm) targets

where the error rate for Watchpoint was nearly half that of the

Vicon and Myo-based techniques. In their evaluation of

Myopoint, Haque et al. reported average error rates for such

targets in excess of 35%. With Haque et al., we note that error

seems a function of target size, not ID, indicating that, potentially,

techniques may be more limited by visual acquisition and

Control-Display gain settings than by form factor.

4.8 Limitations
Watchpoint represents a first-step towards developing a

ubiquitous freehand pointing technique. As a first step, it

demonstrates the feasibility and promise of such techniques, but is

also necessarily limited in scope. In particular, we envision next

steps in this research to address three of these limitations:

4.8.1 State-Transition Errors
During the course of our study, we noticed a few cases where

users were not sure of Watchpoint’s current state. For example, as

shown in Figure 4, to avoid unintentional clicks, we designed the

state transition diagram such that the required angle to return to

the Tracking state is steeper (10 degrees) than the angle to invoke

the click event (30 degrees). A consequence of this asymmetry is

that once users are aware of the exact angle required to invoke the

click event, they tend to rotate their wrist as little as possible to

minimize effort, and occasionally do not rotate enough to return to

the Tracking state.

While users rapidly became aware of their error during the study

and did discover how to accommodate for state transitions, we

also recognize these difficulties as an opportunity to provide

additional feedback to users regarding the current state of the

mouse cursor, and to refine Watchpoint’s gesture recognition. For

example, most smartwatches include haptic feedback hardware

that could be leveraged to indicate when state-transitions occur.

As well, in terms of state transition recognition, we used the naive

approach of applying thresholds to the absolute angle of the user’s

wrist rotation. We expect that a state model that relies on relative

wrist movements may further help to address these minor

usability issues.

4.8.2 Hardware Limitations
Our current prototype was intentionally limited to running on a

single display and relied upon smartphone and laptop computers

for connectivity. While this design enabled us to empirically

validate the performance of current-generation smartwatch

hardware, it does not implement the vision of a fully-connected,

ubiquitous interaction technique. At the time of this writing,

smartwatch SDKs are becoming available that enable more

powerful applications to run on the smartwatch CPUs, rather than

being offloaded to a smartphone or laptop. It also allows the

smartwatch to connect a network without a smartphone. We also

expect that wearable devices will have improved connectivity in

the near future, and, thus, be able to connect to a display directly

through protocols such as Bluetooth HID.

4.8.3 Transitioning between Absolute and Relative

Modes of Input
Our work addresses many challenges related to freehand pointing,

such as the selection of small targets; however, there is room for

improvement in the implementation of our cursor acceleration

algorithm. In particular, as users transition between pointing at

targets they transition between relative and absolute modes of

interaction as the acceleration algorithm is activated and

deactivated. While slowing of the cursor is handled elegantly in

our system, under our current implementation the cursor ‘jumps’

as a user moves away from a target and the cursor’s rate of

movement returns to normal. Methods of ‘smoothing’ this

transition are an important next step.

5. IMPLICATIONS FOR DESIGN
Our results suggest that current generation, off-the-shelf

smartwatch hardware is capable of enabling interactions in

ubiquitous environments, and that a modern smartwatch is well-

positioned to serve as a gateway device for interaction with a

computationally augmented world. However, upon reflecting on

our work, our results suggest implications for the design of

freehand pointing techniques, regardless of the facilitating

technology. In particular, our results provide insight into the

effectiveness of cursor acceleration functions and the need for

simple calibration and subtle gestures.

5.1 Cursor Acceleration Functions
Our evaluation suggests that Watchpoint provides comparable

selection times to other techniques, but with a significantly

reduced error rate for small targets. However, achieving this level

of performance required some fine-tuning on a number of levels.

For example, our cursor acceleration algorithm was designed to

improve pointing performance for small targets, and data

collected during our study suggests the algorithm was effective.

Similarly, our work on position correction and jitter correction is

applicable to other freehand pointing techniques, particularly

those that wish to include Watchpoint’s ‘twist to select’

mechanism.

There is a benefit to additional research to identify optimal cursor

acceleration and filtering parameters that can be applied to all

freehand pointing techniques. As wearable devices continue to

evolve and become more affordable, they are positioned to

become a personal gateway to ubiquitous environments.

Furthermore, vision-based systems will also continue to improve.

We feel it is important to have a common experience across all

freehand devices. In summary, there is a need for research, such

as ours, that develops solutions to common issues such as jitter

that can be applied across a range of underlying technologies.

5.2 Zero Calibration
One of the benefits of using a smartwatch’s gravity and rotation

sensors is that they provide an absolute reference point. For

vertical positioning, Watchpoint does not require calibration since

a user’s horizontal arm position is mapped to the center of the

display. For horizontal positioning, the angle of the watch is used

only when it switches to the active mode. Since we do not use the

actual position of the screen, the calibration process is robust and

simple. Using this technique, the calibration process is naturally

134

merged into normal pointing interactions with a nearby

screen.Subtle Gestures

Camera-based tracking systems, such as the Vicon-based system

in our study, often rely upon users making exaggerated gestures

for input. For example, pointing at a large display requires a user

to fully extend their arms and point with an outstretched finger.

However, recent research [18] has confirmed that in reality,

individuals tend towards more limited movements over time to

reduce fatigue; a phenomenon widely recognized by those who

have played Nintendo’s Wii. However, as individuals shift

towards these less exaggerated gestures, camera-based systems

become less effective at detecting interactive gestures.

A benefit of Watchpoint, and other wearable-based techniques, is

that they do not require these exaggerated movements, and work

equally well with a person standing in front of a display or sitting

in a chair with their arm on an armrest. Given other limitations of

camera-based techniques such as occlusion, lighting constraints,

and difficulties in identifying users, we suggest that device-based

interactions are likely to replace camera-based techniques for

many applications.

6. CONCLUSIONS
We present the design and validation of Watchpoint, a system that

supports pointing and clicking on a nearby large display via a

smartwatch. We show through a controlled Fitts’s Law study that

our prototype provides performance comparable to other freehand

pointing techniques for pointing time, and outperforms those

systems in terms of error rate. Our work demonstrates that a

commodity smartwatch can serve as an interaction device for

pointing in ubiquitous display environments. Because no vision-

based tracking system is involved, there is no occlusion problem.

The user can interact with displays in a ubiquitous environment

even when there is an obstacle between the user and the display

(ie. audience can interact with the screen in the movie theater

from behind the other people.) We envision that Watchpoint may

illustrate a potential ‘killer app’ for the emerging smartwatch

market.

7. ACKNOWLEDGEMENTS
The authors thank the Natural Sciences and Engineering Research

Council of Canada and Google for funding this research.

8. REFERENCES
[1] Android API Guides, Motion Sensors. Retrieved January,

2016, from

http://developer.android.com/guide/topics/sensors/sensors_m

otion.html

[2] Ballagas, R., Borchers, J., Rohs, M., and Sheridan, J. 2006.

The Smart Phone: A Ubiquitous Input Device. IEEE

Pervasive Comput. IEEE Pervasive Computing, 5(1), 70-77.

[3] Bowman, D., Wingrave, C., Campbell, J., and Sy, V. 2001.

Using pinch gloves ™ for both natural and abstract

interaction techniques in virtual environments. Proceedings

of HCI internationall 2001.

[4] Buxton, W. 1990. A Three-State Model of Graphical Input.

In D. Diaper et al. (Eds), Human-Computer Interaction -

INTERACT '90. Amsterdam: Elsevier Science Publishers

B.V. (North-Holland), 449-456.

[5] Casiez, G., Roussel, N., and Vogel, D. 2012. 1 € filter.

Proceedings of the 2012 ACM Annual Conference on

Human Factors in Computing Systems - CHI '12.

[6] Chen, X., and Davis, J. 2000. Camera Placement Considering

Occlusion for Robust Motion Capture. Stanford University

Computer Science Technical Report, CS-RT-2000-07

[7] Fitts, P. M. 1954. 1954. The Information Capacity of the

Human Motor System in Controlling the Amplitude of

Movement Journal of Experimental Psychology, 47 (6), 381–

391.

[8] Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino,

R., and Wang, M. 2011. Proxemic interactions. Interactions,

18(1), 42.

[9] Haque, F., Nancel, M., and Vogel, D. 2015. Myopoint.

Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems - CHI '15.

[10] Huang, E. M., Mynatt, E. D., and Trimble, J. P. 2007. When

design just isn’t enough: The unanticipated challenges of the

real world for large collaborative displays. Personal and

Ubiquitous Computing, 11(7), 537-547.

[11] ISO, 2002, Ergonomic requirements for office work with

visual display terminals (VDTs) - Part 9: Requirements for

non-keyboard input devices. (ISO 9241-9)

[12] Jota, R., Nacenta, M., Jorge, J., Carpendale, S. and

Greenberg, S. 2010. A Comparison of Ray Pointing

Techniques for Very Large Displays. GI ’10 Proceedings of

Graphics Interface 2010

[13] Myers, B. A. 2001. Using handhelds and PCs together.

Communications of the ACM Commun. ACM, 44(11), 34-

41.

[14] Nancel, M., Chapuis, O., Pietriga, E., Yang, X., Irani, P. P.,

& Beaudouin-Lafon, M. 2013. High-precision pointing on

large wall displays using small handheld devices.

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems - CHI '13.

[15] Pietroszek, K., Kuzminykh, A., Wallace, J. R., and Lank, E.

2014. Smartcasting. Proceedings of the 26th Australian

Computer-Human Interaction Conference on Designing

Futures the Future of Design - OzCHI '14.

[16] Pietroszek, K., Wallace, J. R., and Lank, E. 2015. Tiltcasting.

Proceedings of the 28th Annual ACM Symposium on User

Interface Software & Technology - UIST '15.

[17] Raskar, R., Nii, H., deDecker, B., Hashimoto, Y., Summet,

J., Moore, D., Zhao, Y., Westhues, J., Dietz, P., Barnwell, J.,

Nayar, S, Inami, M., Bekaert, P., Noland, M.Branzoi, V. and

Bruns, E. 2007. Prakash:Lighting aware motion capture

using photosensing markers and multiplexed illuminators.

ACM Transactions on Graphics, 26(3), 36.

[18] Ruiz, J., and Vogel, D. 2015. Soft-Constraints to Reduce

Legacy and Performance Bias to Elicit Whole-body Gestures

with Low Arm Fatigue. Proceedings of the 33rd Annual

ACM Conference on Human Factors in Computing Systems

- CHI '15.

[19] Vogel, D., and Balakrishnan, R. 2005. Distant freehand

pointing and clicking on very large, high resolution displays.

Proceedings of the 18th Annual ACM Symposium on User

Interface Software and Technology - UIST '05.

[20] Yee, K. 2003. Peehole displays. Proceedings of the

Conference on Human Factors in Computing Systems - CHI

'03.

135

